CLASSE: 5ème

CORRIGE DU CONTRÔLE

(d)

5

 $/(d_3)$

sur le chapitre : ANGLES

EXERCICE 1: /4 points

Dans la figure ci-contre, cite sans justifier :

a. Deux angles opposés par le sommet.

L'angle 1 et l'angle 2 sont opposés par le sommet. /0,5 point

b. Deux angles alternes-internes.

L'angle 2 et l'angle 3 sont alternes-/0,5 point internes.

c. Deux angles supplémentaires.

L'angle 3 et l'angle 4 sont(d₁) supplémentaires. /0,5 point

d. Deux angles correspondants (ici, on demande les trois réponses possibles).

L'angle 1 et l'angle 3 sont correspondants.

/0,5 point

L'angle 4 et l'angle 5 sont correspondants. L'angle 3 et l'angle 6 sont correspondants. /0,5 point

e. Deux angles complémentaires.

L'angle 5 et l'angle 6 sont complémentaires.

/0,5 point

/0,5 point

(d.

f. Deux angles adjacents.

L'angle 3 et l'angle 4 sont adjacents.

/0.5 point

EXERCICE 2: /7 points (1+1,5+1+1+1,5+1)

Dans la figure ci-dessous, on sait que $\widehat{xAE} = 112^{\circ}$, $\widehat{AEB} = 15^{\circ}$, $\widehat{CFE} = 75^{\circ}$ et $\widehat{yDG} = 68^{\circ}$. De plus, on sait que les droites (zt) et (BE) sont perpendiculaires. On ne sait pas si les droites (uv), (d_1) et (d_2) sont parallèles.

a. Donne, en justifiant, la mesure de \widehat{CDG} .

 $\widehat{\mathsf{CD}} y$ est un angle plat,

donc $\widehat{CDG} + \widehat{GD} y = 180^{\circ}$.

Donc $\widehat{CDG} = 180^{\circ} - 68^{\circ}$

Donc $\widehat{CDG} = 112^{\circ}$.

/1 point

b. Que peut-on dire des droites (d_2) et (uv)? Justifie.

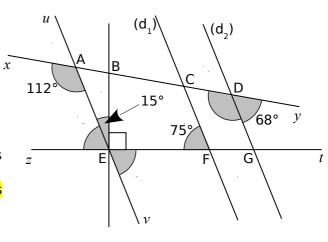
Les angles \widehat{CDG} et \widehat{xAv} déterminés par les droites (uv), (d_2) et la sécante (xv) sont correspondants. Les angles \widehat{CDG} et \widehat{xAv} ont la même mesure donc les droites (uv) et (d₂) sont parallèles. /1,5 points

c. Donne, en justifiant, la mesure de u E z.

z Et est un angle plat,

donc
$$\widehat{uE}z + \widehat{uE}B + \widehat{BE}t = 180^{\circ}$$
.

Donc
$$\widehat{uEz} = 180^{\circ} - (15^{\circ} + 90^{\circ})$$


Donc $\widehat{uE}z = 180^{\circ} - 105^{\circ}$

Donc $\widehat{uEz} = 75^{\circ}$.

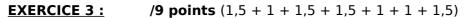
/1 point

d. Donne, en justifiant, la mesure de \widehat{vEF} .

 $\widehat{u} \, \widehat{E} z$ et $\widehat{v} \, \widehat{E} \, F$ sont opposés par le sommet donc ils ont la même mesure.

تم تحميل هذا الملف من موقع تلاميذي www.talamidi.com

Donc $\widehat{v}EF = 75^{\circ}$.

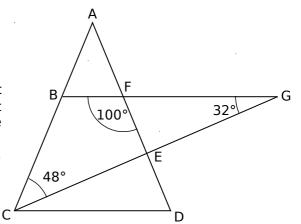

/1 point

e. Que peut-on déduire de la mesure des angles \widehat{vEF} et \widehat{CFE} pour les droites (uv) et (d₁) ? Justifie.

Les angles $\widehat{\mathsf{CFE}}$ et $\widehat{v\mathsf{EF}}$ déterminés par les droites (uv), $(\mathsf{d_1})$ et la sécante (zt) sont alternes-internes. Les angles $\widehat{\mathsf{CFE}}$ et $\widehat{v\mathsf{EF}}$ ont la même mesure donc les droites (uv) et $(\mathsf{d_1})$ sont parallèles. /1,5 points

f. Explique pour quelle raison les droites (d_1) et (d_2) sont parallèles.

Les droites (d_1) et (d_2) sont toutes les deux parallèles à la droite (uv) donc les droites (d_1) et (d_2) sont parallèles.



Dans la figure ci-contre, on sait que $\widehat{FGE} = 32^{\circ}$, $\widehat{BFE} = 100^{\circ}$ et $\widehat{BCE} = 48^{\circ}$. De plus, les droites (BG) et (CD) sont parallèles.

a. Donne, en justifiant, la mesure de \widehat{ECD} .

Les angles alternes-internes \widehat{ECD} et \widehat{FGE} sont déterminés par les droites (FG) et (CD), qui sont parallèles, et la sécante (CG). Ils sont donc de la même mesure. L'angle \widehat{ECD} mesure donc 32°. /1,5 points **b.** Que peut-on dire des angles \widehat{BCE} et \widehat{ECD} ? Donne la

mesure de \widehat{ACD} .

BCE et ECD sont adjacents.

/0,5 point

$$\widehat{ACD} = \widehat{BCE} + \widehat{ECD} = 48^{\circ} + 32^{\circ}$$

Donc $\widehat{ACD} = 80^{\circ}$.

/0,5 point

c. Donne, en justifiant, la mesure de \widehat{AFB} .

 \widehat{AFD} est un angle plat donc $\widehat{AFB} + \widehat{BFD} = 180^{\circ}$.

Donc $\widehat{AFB} = 180^{\circ} - 100^{\circ}$

Donc $\widehat{AFB} = 80^{\circ}$. /1,5 points

d. Donne, en justifiant, la mesure de \widehat{EDC} .

Les angles correspondants $\widehat{\mathsf{EDC}}$ et $\widehat{\mathsf{AFB}}$ sont déterminés par les droites (FG) et (CD), qui sont parallèles, et la sécante (AD). Ils sont donc de la même mesure.

L'angle EDC mesure donc 80°.

/1,5 points

e. Que peut-on en déduire pour le triangle ACD ? Justifie.

Les angles \widehat{ACD} et \widehat{ADC} mesurent tous les deux 80° donc le triangle ACD est isocèle en A. /1 point f. Donne, en justifiant, la mesure de l'angle \widehat{CAD} .

La somme des angles d'un triangle vaut 180°,

donc
$$\widehat{CAD} + \widehat{ACD} + \widehat{ADC} = 180^{\circ}$$
.

Donc
$$\widehat{CAD} = 180^{\circ} - (80^{\circ} + 80^{\circ})$$

Donc $\widehat{CAD} = 20^{\circ}$.

g. En calculant préalablement la mesure d'un autre angle, donne, en justifiant, la mesure de $\widehat{\mathit{FEG}}$.

 $\widehat{\mathsf{BFG}}$ est un angle plat donc $\widehat{\mathsf{BFE}} + \widehat{\mathsf{EFG}} = 180^\circ$.

Donc
$$\widehat{EFG} = 180^{\circ} - 100^{\circ}$$

Donc $\widehat{\mathsf{EFG}} = 80^{\circ}$.

/0,5 point

La somme des angles d'un triangle vaut 180°,

donc
$$\widehat{FEG} + \widehat{EFG} + \widehat{FGE} = 180^{\circ}$$
.

Donc
$$\widehat{FEG} = 180^{\circ} - (80^{\circ} + 32^{\circ})$$

Donc $\widehat{FEG} = 68^{\circ}$. /1 point